Publication:
Honey’s Ability to Counter Bacterial Infections Arises from Both Bactericidal Compounds and QS Inhibition

Thumbnail Image

Date

2012

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Research Foundation
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Wang, Rui, Melissa Starkey, Ronen Hazan, and Laurence G. Rahme. 2012. Honey’s ability to counter bacterial infections arises from both bactericidal compounds and QS inhibition. Frontiers in Microbiology 3:144.

Research Data

Abstract

The ability of honey to kill bacterial pathogens in vitro and quickly clear even chronic or drug-resistant infections has been demonstrated by several studies. Most current research is focused on identifying the bactericidal compounds in honey, but the action of the compounds discovered is not sufficient to explain honey’s activity. By diluting honey to sub-inhibitory levels, we were able to study its impact on bacterial coordinated behavior, and discovered that honey inhibits bacterial quorum sensing (QS). Experiments to characterize and quantify honey’s effect on the QS networks of Pseudomonas aeruginosa revealed that low concentrations of honey inhibited the expression of MvfR, las, and rhl regulons, including the associated virulence factors. This research also establishes that inhibition of QS is associated with honey’s sugar content. Therefore, honey combats infections by two independent mechanisms acting in tandem: bactericidal components, which actively kill cells, and disruption of QS, which weakens bacterial coordination and virulence.

Description

Keywords

honey, Pseudomonas, quorum-sensing, infection, anti-infective, QS inhibition, mvfR(pqsR), sugars

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories