Publication:
Partitioned Compressive Sensing with Neighbor-Weighted Decoding

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kung, H.T. and Stephen J. Tarsa. 2011. Partitioned compressive sensing with neighbor-weighted decoding. In proceedings of Military Communications Conference (MILCOM 2011), Baltimore, MD, November 7-10, 2011.

Research Data

Abstract

Compressive sensing has gained momentum in recent years as an exciting new theory in signal processing with several useful applications. It states that signals known to have a sparse representation may be encoded and later reconstructed using a small number of measurements, approximately proportional to the signal s sparsity rather than its size. This paper addresses a critical problem that arises when scaling compressive sensing to signals of large length: that the time required for decoding becomes prohibitively long, and that decoding is not easily parallelized. We describe a method for partitioned compressive sensing, by which we divide a large signal into smaller blocks that may be decoded in parallel. However, since this process requires a signi cant increase in the number of measurements needed for exact signal reconstruction, we focus on mitigating artifacts that arise due to partitioning in approximately reconstructed signals. Given an error-prone partitioned decoding, we use large magnitude components that are detected with highest accuracy to in uence the decoding of neighboring blocks, and call this approach neighbor-weighted decoding. We show that, for applications with a prede ned error threshold, our method can be used in conjunction with partitioned compressive sensing to improve decoding speed, requiring fewer additional measurements than unweighted or locally-weighted decoding.

Description

Keywords

bismuth, compressed sensing, decoding, finite wordlength effects, frequency measurement, matching pursuit algorithms, silicon

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories