Publication:
Measurement Combining and Progressive Reconstruction in Compressive Sensing

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Chen, Hsieh-Chung, H.T. Kung, Dario Vlah, and Bruce Suter. 2011. Measurement combining and progressive reconstruction in compressive sensing. In Proceedings of Military Communications Conference (MILCOM 2011), 163-168. Piscataway, New Jersey: IEEE Communications Society.

Research Data

Abstract

Compressive sensing has emerged as an important new technique in signal acquisition due to the surprising property that a sparse signal can be captured from measurements obtained at a sub-Nyquist rate. The decoding cost of compressive sensing, however, grows superlinearly with the problem size. In distributed sensor systems, the aggregate amount of compressive measurements encoded by the sensors can be substantial, and the decode cost for all the variables involved can be large. In this paper we propose a method to combine measurements from distributed sensors. With our method we can transport and store a single combined measurement set, rather than multiple sets for all sensors. We show that via source separation and joint decoding, it is possible to recover an approximate to the original signal from combined measurements using progressive reconstruction which focuses on individual sensors. This results in a reduction in the number of variables used in decoding and consequently a reduced decoding time. We show that the computed approximation to the signal can still have sufficient accuracy for target detection. We describe the combining approach and the associated progressive reconstruction, and we illustrate them with image recovery for simple target detection examples.

Description

Keywords

compressed sensing, decoding, dictionaries, encoding, image-reconstruction, interference, vectors, object detection, signal detection, signal reconstruction, compressive measurements, compressive sensing, distributed sensor systems, progressive reconstruction, signal acquisition, source separation, sparse signal, target detection, sub-Nyquist rate

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories