Publication:
Single-photon nonlinearities in two-mode optomechanics

Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kómár, P., S. Bennett, K. Stannigel, S. Habraken, P. Rabl, P. Zoller, and M. Lukin. 2013. “Single-Photon Nonlinearities in Two-Mode Optomechanics.” Physical Review A 87 (1) (January).

Research Data

Abstract

We present a detailed theoretical analysis of a weakly driven, multimode optomechanical system, in which two optical modes are strongly and near-resonantly coupled to a single mechanical mode via a three-wave mixing interaction. We calculate one- and two-time intensity correlations of the two optical fields and compare them to analogous correlations in atom-cavity systems. Nonclassical photon correlations arise when the optomechanical coupling g exceeds the cavity decay rate κ, and we discuss signatures of one- and two-photon resonances as well as quantum interference. We also find a long-lived correlation that decays slowly with the mechanical decay rate γ, reflecting the heralded preparation of a single-phonon state after detection of a photon. Our results provide insight into the quantum regime of multimode optomechanics, with potential applications for quantum information processing with photons and phonons.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories