Publication: Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy
Date
2013
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-Blackwell
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
DeVience, Stephen J., Ronald L. Walsworth, and Matthew S. Rosen. 2013. “Nuclear Spin Singlet States as a Contrast Mechanism for NMR Spectroscopy.” NMR in Biomedicine 26 (10) (April 18): 1204–1212. doi:10.1002/nbm.2936.
Research Data
Abstract
Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, m\(_z\) = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism ‘Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States’ (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine.
Description
Other Available Sources
Keywords
quantum filter, nuclear spin singlet state, glutamine, spin locking
Terms of Use
Metadata Only