Publication: Dressed-State Resonant Coupling between Bright and Dark Spins in Diamond
Date
2013
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Belthangady, C., N. Bar-Gill, L. Pham, K. Arai, D. Le Sage, P. Cappellaro, and R. Walsworth. 2013. Dressed-State Resonant Coupling between Bright and Dark Spins in Diamond. Physical Review Letters 110, no. 15: 157601.
Research Data
Abstract
Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically “dark”; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are “bright”; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service