Publication:
Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

Thumbnail Image

Date

2013

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Division of Particles and Fields of the American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Abazajian, K. N., K. Arnold, J. Austermann, B. A. Benson, C. Bischoff, J. Bock, J. R. Bond, et al. 2013. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure. In Planning the Future of U.S. Particle Physics: The Snowmass 2013 Proceedings, ed. Norman A. Graf, Michael E. Peskin, and Jonathan L. Rosner. College Park, MD: The Division of Particles and Fields of the American Physical Society.

Research Data

Abstract

Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories