Publication: Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
Open/View Files
Date
2015
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Farfurnik, D., A. Jarmola, L. M. Pham, Z. H. Wang, V. V. Dobrovitski, R. L. Walsworth, D. Budker, and N. Bar-Gill. 2015. “Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond.” Physical Review B 92 (6) (August). doi:10.1103/physrevb.92.060301.
Research Data
Abstract
We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ∼0.7ms up to ∼30ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service