Publication:
Plasmonic hot electron transport drives nano-localized chemistry

Thumbnail Image

Open/View Files

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Cortés, Emiliano, Wei Xie, Javier Cambiasso, Adam S. Jermyn, Ravishankar Sundararaman, Prineha Narang, Sebastian Schlücker, and Stefan A. Maier. 2017. “Plasmonic hot electron transport drives nano-localized chemistry.” Nature Communications 8 (1): 14880. doi:10.1038/ncomms14880. http://dx.doi.org/10.1038/ncomms14880.

Research Data

Abstract

Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories