Publication:
Paired Exome Analysis of Barrett’s Esophagus and Adenocarcinoma

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Stachler, M. D., A. Taylor-Weiner, S. Peng, A. McKenna, A. T. Agoston, R. D. Odze, J. M. Davison, et al. 2015. “Paired Exome Analysis of Barrett’s Esophagus and Adenocarcinoma.” Nature genetics 47 (9): 1047-1055. doi:10.1038/ng.3343. http://dx.doi.org/10.1038/ng.3343.

Research Data

Abstract

Barrett’s esophagus, is thought to progress to esophageal adenocarcinoma (EAC) through a step-wise progression with loss of CDKN2A followed by p53 inactivation and aneuploidy. Here, we present whole exome sequencing from 25 pairs of EAC and Barrett’s and five patients whose Barrett’s and tumor were extensively sampled. Our analysis revealed that oncogene amplification typically occurred as a late event and that TP53 mutations often occur early in Barrett’s progression, including in non-dysplastic epithelium. Reanalysis of additional EAC exome data revealed that the majority (62.5%) of EACs emerged following genome doubling and that tumors with genomic doubling had different patterns of genomic alterations with more frequent oncogenic amplifications and less frequent inactivation of tumor suppressors, including CDKN2A. These data suggest that many EACs emerge not through gradual accumulation of tumor suppressor alterations but rather through a more direct path whereby a TP53-mutant cell undergoes genome doubling, followed by acquisition of oncogenic amplifications.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories