Publication:
High-performance probes for light and electron microscopy

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Viswanathan, S., M. E. Williams, E. B. Bloss, T. J. Stasevich, C. M. Speer, A. Nern, B. D. Pfeiffer, et al. 2015. “High-performance probes for light and electron microscopy.” Nature methods 12 (6): 568-576. doi:10.1038/nmeth.3365. http://dx.doi.org/10.1038/nmeth.3365.

Research Data

Abstract

We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These “spaghetti monster” fluorescent proteins (smFPs) distribute well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localizes weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allow robust, orthogonal multi-color visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers, greatly increase the number of simultaneous imaging channels, and perform well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improve single-molecule image tracking and increase yield for RNA-Seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories