Publication: Condensation on slippery asymmetric bumps
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Park, Kyoo-Chul, Philseok Kim, Alison Grinthal, Neil He, David Fox, James C. Weaver, and Joanna Aizenberg. 2016. “Condensation on Slippery Asymmetric Bumps.” Nature 531 (7592) (February 24): 78–82. doi:10.1038/nature16956.
Research Data
Abstract
Controlling dropwise condensation is fundamental to water- harvesting systems1–3, desalination4, thermal power generation4–8, air conditioning9, distillation towers10, and numerous other applications4,5,11. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible4–7. However, approaches4–8,10–21 based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade- offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach— based on principles derived from Namib desert beetles3,22–24, cacti25, and pitcher plants17,26—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion flux20,27,28 at the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be applied to a wide range of water-harvesting and phase-change heat-transfer applications.
Description
Other Available Sources
Keywords
Terms of Use
Metadata Only