Publication:
The Optical Janus Effect: Asymmetric Structural Color Reflection Materials

Thumbnail Image

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

England, Grant T., Calvin Russell, Elijah Shirman, Theresa Kay, Nicolas Vogel, and Joanna Aizenberg. 2017. “The Optical Janus Effect: Asymmetric Structural Color Reflection Materials.” Advanced Materials 29 (29) (June 6): 1606876. doi:10.1002/adma.201606876.

Research Data

Abstract

Structurally colored materials are often used for their resistance to photobleaching and their complex viewing direction-dependent optical properties. Frequently, absorption has been added to these types of materials in order to improve the color saturation by mitigating the effects of nonspecific scattering that is present in most samples due to imperfect manufacturing procedures. The combination of absorbing elements and structural coloration often yields emergent optical properties. Here, we introduce a new hybrid architecture that leads to an interesting, highly directional optical effect. By localizing absorption in a thin layer within a transparent, structurally colored multilayer material, we create an optical Janus effect, wherein the observed reflected color is different on one side of the sample than on the other. We perform a systematic characterization of the optical properties of these structures as a function of their geometry and composition. The experimental studies are coupled with a theoretical analysis that enables a precise, rational design of various optical Janus structures with highly controlled color, pattern and fabrication approaches. These asymmetrically colored materials will open applications in art, architecture, semitransparent solar cells and security features in anti- counterfeiting materials.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories