Publication:
Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions

Thumbnail Image

Open/View Files

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Zakirova, Z., T. Fanutza, J. Bonet, B. Readhead, W. Zhang, Z. Yi, G. Beauvais, et al. 2018. “Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions.” PLoS Genetics 14 (1): e1007169. doi:10.1371/journal.pgen.1007169. http://dx.doi.org/10.1371/journal.pgen.1007169.

Research Data

Abstract

Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia.

Description

Keywords

Biology and Life Sciences, Anatomy, Brain, Neostriatum, Medicine and Health Sciences, Cerebral Cortex, Cerebellum, Neurology, Neurodegenerative Diseases, Movement Disorders, Dystonia, Experimental Organism Systems, Model Organisms, Mouse Models, Animal Models, Cell Biology, Cellular Types, Animal Cells, Neurons, Neuroscience, Cellular Neuroscience, Synaptic Plasticity, Developmental Neuroscience, Computational Biology, Genome Analysis, Gene Ontologies, Genetics, Genomics, Gene Expression

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories