Publication:
Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes

No Thumbnail Available

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Hartnoll, Sean A., Pavel K. Kovtun, Markus Müller, and Subir Sachdev. 2007. “Theory of the Nernst Effect near Quantum Phase Transitions in Condensed Matter and in Dyonic Black Holes.” Physical Review B 76 (14). https://doi.org/10.1103/physrevb.76.144502.

Research Data

Abstract

We present a general hydrodynamic theory of transport in the vicinity of superfluid-insulator transitions in two spatial dimensions described by "Lorentz"-invariant quantum critical points. We allow for a weak impurity scattering rate, a magnetic field B, and a deviation in the density rho from that of the insulator. We show that the frequency-dependent thermal and electric linear response functions, including the Nernst coefficient, are fully determined by a single transport coefficient (a universal electrical conductivity), the impurity scattering rate, and a few thermodynamic state variables. With reasonable estimates for the parameters, our results predict a magnetic field and temperature dependence of the Nernst signal which resembles measurements in the cuprates, including the overall magnitude. Our theory predicts a "hydrodynamic cyclotron mode" which could be observable in ultrapure samples. We also present exact results for the zero frequency transport coefficients of a supersymmetric conformal field theory (CFT), which is solvable by the anti-de Sitter (AdS)/CFT correspondence. This correspondence maps the rho and B perturbations of the 2+1 dimensional CFT to electric and magnetic charges of a black hole in the 3+1 dimensional anti-de Sitter space. These exact results are found to be in full agreement with the general predictions of our hydrodynamic analysis in the appropriate limiting regime. The mapping of the hydrodynamic and AdS/CFT results under particle-vortex duality is also described.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories