Publication:
Historical Contingency Shapes Adaptive Radiation in Antarctic Fishes

No Thumbnail Available

Date

2019-06-10

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media LLC
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Daane, Jacob M., Alex Dornburg, Patrick Smits, Daniel J. MacGuigan, M. Brent Hawkins, Thomas J. Near, H. William Detrich III, and Matthew P. Harris. 2019. Historical Contingency Shapes Adaptive Radiation in Antarctic Fishes. Nature Ecology & Evolution 3, no. 7: 1102-109.

Research Data

Abstract

Adaptive radiation illustrates links between ecological opportunity, natural selection, and the generation of biodiversity. Central to adaptive radiation is the association between a diversifying lineage and the evolution of phenotypic variation that facilitates the utilization of novel environments or resources. However, is not clear whether adaptive evolution or historical contingency is more important for the origin of key phenotypic traits in adaptive radiation. Here we use targeted sequencing of >250,000 loci across 46 species to examine hypotheses concerning the origin and diversification of key traits in the adaptive radiation of Antarctic notothenioid fishes. Contrary to expectations of adaptive evolution, we show that notothenioids experienced a punctuated burst of genomic diversification and evolved key skeletal modifications before the onset of polar conditions in the Southern Ocean. We show that diversifying selection in pathways associated with human skeletal dysplasias facilitates ecologically important variation in buoyancy among Antarctic notothenioid species, and demonstrate the sufficiency of altered trip11, col1a2 and col1a1 function in zebrafish (Danio rerio) to phenocopy skeletal reduction in Antarctic notothenioids. Rather than adaptation being driven by the cooling of the Antarctic, our results highlight the role of historical contingency in shaping the adaptive radiation of notothenioids. Understanding the historical and environmental context for the origin of key traits in adaptive radiations extends beyond reconstructing events that result in evolutionary innovation as it also provides a context in forecasting the effects of climate change on the stability and evolvability of natural populations.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories