Publication:
A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society (ACS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Jin, Shijian, Yan Jing, David G. Kwabi, Yunlong Ji, Liuchuan Tong, Diana De Porcellinis, Marc-Antoni Goulet, Daniel A. Pollack, Roy G. Gordon, and Michael J. Aziz. "A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density." ACS Energy Letters 4, no. 6 (2019): 1342-348.

Research Data

Abstract

A water-miscible anthraquinone with polyethylene glycol (PEG)-based solubilizing groups is introduced as the redox-active molecule in a negative electrolyte (negolyte) for aqueous redox flow batteries, exhibiting the highest volumetric capacity among aqueous organic negolytes. We synthesized and screened a series of PEG-substituted anthraquinones (PEGAQs) and carefully studied one of its isomers, namely 1,8-bis(2-(2-(2- hydroxyethoxy)ethoxy)ethoxy)anthracene-9,10-dione (AQ-1,8-3E-OH), which has high electrochemical reversibility and is completely miscible in water of any pH. A negolyte containing 1.5 M AQ-1,8-3E-OH, when paired with a ferrocyanide-based positive electrolyte across an inexpensive, non-fluorinated permselective polymer membrane at pH 7, exhibits an open-circuit potential of 1.0 V, a volumetric capacity of 80.4 Ah/L, and an energy density of 25.2 Wh/L.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories