Publication: Adult axolotls can regenerate original neuronal diversity in response to brain injury
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
eLife Sciences Publications, Ltd
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Amamoto, Ryoji, Violeta Gisselle Lopez Huerta, Emi Takahashi, Guangping Dai, Aaron K Grant, Zhanyan Fu, and Paola Arlotta. 2016. “Adult axolotls can regenerate original neuronal diversity in response to brain injury.” eLife 5 (1): e13998. doi:10.7554/eLife.13998. http://dx.doi.org/10.7554/eLife.13998.
Research Data
Abstract
The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001
Description
Other Available Sources
Keywords
Axolotl, brain regeneration, neuronal diversity, Other
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service