Publication:
Controlling Material Reactivity Using Architecture

No Thumbnail Available

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-Blackwell
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Sullivan, Kyle T., Cheng Zhu, Eric B. Duoss, Alexander E. Gash, David B. Kolesky, Joshua D. Kuntz, Jennifer A. Lewis, and Christopher M. Spadaccini. 2015. Controlling Material Reactivity Using Architecture. Advanced Materials 28, no. 10 (December 16): 1934–1939.

Research Data

Abstract

3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials.

Description

Other Available Sources

Keywords

Terms of Use

Metadata Only

Endorsement

Review

Supplemented By

Referenced By

Related Stories