Scaling Phloem Transport: Water Potential Equilibrium and Osmoregulatory Flow
View/ Open
(965.7Kb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Published Version
https://doi.org/10.1046/j.1365-3040.2003.01080.xMetadata
Show full item recordCitation
Thompson, Matthew V., and N. Michele Holbrook. 2003. Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell and Environment 26 (9):1561-1577.Abstract
In this work, the common assumption that phloem sap is in water potential equilibrium with the surrounding apoplast was examined. With a dimensionless model of phloem translocation that scales with just two dimensionless parameters ((R) over cap and (F) over cap), a 'map' of phloem behaviour as a function of these parameters was produced, which shows that the water potential equilibrium assumption ((R) over cap(F) over cap >> 1) is valid for essentially all realistic values of the relevant scales. When in water potential equilibrium, a further parameter reduction is possible that limits model dependence to a single parameter ((F) over cap), which describes the ratio of the solution's osmotic strength to its axial pressure drop. Due to the locally autonomous nature of individual sieve element/companion cell complexes, it is argued that long-distance integrative control is most efficient when is large ( that is, when the pressure drop is relatively small), permitting the sieve tube to regulate solute loading in response to global changes in turgor. This mode of transport has been called 'osmoregulatory flow.' Limitations on the pressure drop within the transport phloem could require that sieve tubes be shorter than the long axis of the plant, and thus arranged in series and hydraulically isolated from one another.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3043428
Collections
- FAS Scholarly Articles [18179]
Contact administrator regarding this item (to report mistakes or request changes)