Radionuclide Labeling and Evaluation of Candidate Radioligands for PET Imaging of Histone Deacetylase in the Brain

View/ Open
Hooker_Radionucleotide.pdf (1.112Mb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Muench, Lisa
Reid, Alicia
Chen, Jinzhu
Kang, Yeona
Volkow, Nora D.
Fowler, Joanna S.
Kim, Sung Won
Published Version
https://doi.org/10.1016/j.bmcl.2013.10.038Metadata
Show full item recordCitation
Seo, Young Jun, Lisa Muench, Alicia Reid, Jinzhu Chen, Yeona Kang, Jacob M. Hooker, Nora D. Volkow, Joanna S. Fowler, and Sung Won Kim. 2013. “Radionuclide Labeling and Evaluation of Candidate Radioligands for PET Imaging of Histone Deacetylase in the Brain.” Bioorganic & Medicinal Chemistry Letters 23 (24) (December): 6700–6705. doi:10.1016/j.bmcl.2013.10.038.Abstract
Histone deacetylases (HDACs) regulate gene expression by inducing conformational changes in chromatin. Ever since the discovery of a naturally occurring HDAC inhibitor, trichostatin A (TSA) stimulated the recent development of suberoylanilide (SAHA, Zolinza®), HDAC has become an important molecular target for drug development. This has created the need to develop specific in vivo radioligands to study epigenetic regulation and HDAC engagement for drug development for diseases including cancer and psychiatric disorders. 6-([18F]Fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) was recently developed as a HDAC substrate and shows moderate blood–brain barrier (BBB) permeability and specific signal (by metabolic trapping/or deacetylation) but rapid metabolism. Here, we report the radiosynthesis of two carbon-11 labeled candidate radiotracers (substrate- and inhibitor-based radioligand) for HDAC and their evaluation in non-human primate brain. PET studies showed very low brain uptake and rapid metabolism of both labeled compounds but revealed a surprising enhancement of brain penetration by F for H substitution when comparing one of these to [18F]FAHA. Further structural refinement is needed for the development of brain-penetrant, metabolically stable HDAC radiotracers and to understand the role of fluorine substitution on brain penetration.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33471147
Collections
- HMS Scholarly Articles [17875]
Contact administrator regarding this item (to report mistakes or request changes)