Primitives for Motor Adaptation Reflect Correlated Neural Tuning to Position and Velocity

DSpace/Manakin Repository

Primitives for Motor Adaptation Reflect Correlated Neural Tuning to Position and Velocity

Citable link to this page

 

 
Title: Primitives for Motor Adaptation Reflect Correlated Neural Tuning to Position and Velocity
Author: Sing, Gary Chin-Wei; Joiner, Wilsaan M.; Brayanov, Jordan Brayanov; Smith, Maurice A; Nanayakkara, Thrishantha

Note: Order does not necessarily reflect citation order of authors.

Citation: Sing, Gary C., Wilsaan M. Joiner, Thrishantha Nanayakkara, Jordan B. Brayanov, and Maurice A. Smith. 2009. Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Neuron 64(4): 575-589.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: The motor commands required to control voluntary movements under various environmental conditions may be formed by adaptively combining a fixed set of motor primitives. Since this motor output must contend with state-dependent physical dynamics during movement, these primitives are thought to depend on the position and velocity of motion. Using a recently developed ‘‘error-clamp’’ technique, we
measured the fine temporal structure of changes in motor output during adaptation. Interestingly, these measurements reveal that motor primitives echo a key feature of the neural coding of limb motion— correlated tuning to position and velocity. We show
that this correlated tuning explains why initial stages of motor learning are often rapid and stereotyped, whereas later stages are slower and stimulus specific. With our new understanding of these primitives, we design dynamic environments that are intrinsically the easiest or most difficult to learn, suggesting a theoretical basis for the rational design of improved procedures for motor training and rehabilitation.
Published Version: doi:10.1016/j.neuron.2009.10.001
Other Sources: http://www.seas.harvard.edu/motorlab/Reprints/sing2009.pdf
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:3874485
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters