Aggregation of consumer ratings: an application to Yelp.com
View/ Open
Dai,Jin,Lee,Luca_2018_Article_AggregationOfConsumerRatingsAn.pdf (1.850Mb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Dai, Weijia
Jin, Ginger
Lee, Jungmin
Luca, Michael
Published Version
https://doi.org/10.1007/s11129-017-9194-9Metadata
Show full item recordCitation
Dai, Weijia, Ginger Jin, Jungmin Lee, and Michael Luca. "Aggregation of Consumer Ratings: An Application to Yelp.com." Quantitative Marketing and Economics 16, no. 3 (September 2018): 289–339.Abstract
Because consumer reviews leverage the wisdom of the crowd, the way in which they are aggregated is a central decision faced by platforms. We explore this "rating aggregation problem" and offer a structural approach to solving it, allowing for (1) reviewers to vary in stringency and accuracy, (2) reviewers to be influenced by existing reviews, and (3) product quality to change over time. Applying this to restaurant reviews from Yelp.com, we construct an adjusted average rating and show that even a simple algorithm can lead to large information efficiency gains relative to the arithmetic average.Other Sources
http://www.nber.org/papers/w18567Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41264476
Collections
- HBS Scholarly Articles [838]
Contact administrator regarding this item (to report mistakes or request changes)