Show simple item record

dc.contributor.authorLiu, Luzheng
dc.contributor.authorChavan, Rahul
dc.contributor.authorFeinberg, Mark B.
dc.date.accessioned2011-03-22T16:38:31Z
dc.date.issued2008
dc.identifier.citationLiu, Luzheng, Rahul Chavan, and Mark B, Feinberg. 2008. Dendritic Cells are preferentially targeted among hematolymphocytes by Modified Vaccinia Virus Ankara and play a key role in the induction of virus-specific T cell responses in vivo. BMC Immunology 9: 15.en_US
dc.identifier.issn1471-2172en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:4750996
dc.description.abstractBackground: Modified Vaccinia Ankara (MVA) is a highly attenuated strain of vaccinia virus (VV) that has lost approximately 15% of the VV genome, along with the ability to replicate in most mammalian cells. It has demonstrated impressive safety and immunogenicity profile in both preclinical and clinical studies, and is being actively explored as a promising vaccine vector for a number of infectious diseases and malignancies. However, little is known about how MVA interacts with the host immune system constituents, especially dendritic cells (DCs), to induce strong immune responses despite its inability to replicate in vivo. Using in vitro and in vivo murine models, we systematically investigated the susceptibility of murine DCs to MVA infection, and the immunological consequences of the infection. Results: Our data demonstrate that MVA preferentially infects professional antigen presenting cells, especially DCs, among all the subsets of hematolymphoid cells. In contrast to the reported blockage of DC maturation and function upon VV infection, DCs infected by MVA undergo phenotypic maturation and produce innate cytokine IFN-α within 18 h of infection. Substantial apoptosis of MVA-infected DCs occurs after 12 h following infection and the apoptotic DCs are readily phagocytosed by uninfected DCs. Using MHC class I – deficient mice, we showed that both direct and cross-presentation of viral Ags are likely to be involved in generating viral-specific CD8+ T cell responses. Finally, DC depletion abrogated the T cell activation in vivo. Conclusion: We present the first in vivo evidence that among hematolymphoid cells, DCs are the most susceptible targets for MVA infection, and DC-mediated Ag presentation is required for the induction of MVA-specific immune responses. These results provide important information concerning the mechanisms by which strong immune responses are elicited to MVA-encoded antigens and may inform efforts to further improve the immunogenicity of this already promising vaccine vector.en_US
dc.language.isoen_USen_US
dc.publisherBioMed Centralen_US
dc.relation.isversionofdoi:10.1186/1471-2172-9-15en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359732/pdf/en_US
dash.licenseLAA
dc.titleDendritic Cells are Preferentially Targeted among Hematolymphocytes by Modified Vaccinia Virus Ankara and Play a Key Role in the Induction of Virus-Specific T Cell Responses In Vivoen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalBMC Immunologyen_US
dash.depositing.authorLiu, Luzheng
dc.date.available2011-03-22T16:38:31Z
dash.affiliation.otherHMS^Dermatology-Brigham and Women's Hospitalen_US
dc.identifier.doi10.1186/1471-2172-9-15*
dash.contributor.affiliatedLiu, Luzheng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record