Show simple item record

dc.contributor.advisorGreiner, Markusen_US
dc.contributor.authorPreiss, Philipp Moritzen_US
dc.date.accessioned2016-04-21T18:07:05Z
dc.date.created2016-03en_US
dc.date.issued2015-12-14en_US
dc.date.submitted2016en_US
dc.identifier.citationPreiss, Philipp Moritz. 2016. Atomic Bose-Hubbard Systems With Single-Particle Control. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:26718727
dc.description.abstractExperiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Rényi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.en_US
dc.description.sponsorshipPhysicsen_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoenen_US
dash.licenseLAAen_US
dc.subjectPhysics, Atomicen_US
dc.subjectPhysics, Condensed Matteren_US
dc.subjectPhysics, Opticsen_US
dc.titleAtomic Bose-Hubbard Systems With Single-Particle Controlen_US
dc.typeThesis or Dissertationen_US
dash.depositing.authorPreiss, Philipp Moritzen_US
dc.date.available2016-04-21T18:07:05Z
thesis.degree.date2016en_US
thesis.degree.grantorGraduate School of Arts & Sciencesen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
dc.contributor.committeeMemberDemler, Eugeneen_US
dc.contributor.committeeMemberLukin, Mikhailen_US
dc.type.materialtexten_US
thesis.degree.departmentPhysicsen_US
dash.identifier.vireohttp://etds.lib.harvard.edu/gsas/admin/view/707en_US
dc.description.keywordsUltracold atoms; Optical lattices; Experiment; Bose-Hubbard; Quantum Walk; Entanglement entropyen_US
dash.author.emailphilipp.preiss@gmail.comen_US
dash.identifier.drsurn-3:HUL.DRS.OBJECT:26752204en_US
dash.contributor.affiliatedPreiss, Philipp Moritz


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record