Cost Analysis of Stratospheric Albedo Modification Delivery Systems

DSpace/Manakin Repository

Cost Analysis of Stratospheric Albedo Modification Delivery Systems

Citable link to this page

 

 
Title: Cost Analysis of Stratospheric Albedo Modification Delivery Systems
Author: McClellan, Justin; Keith, David; Apt, Jay

Note: Order does not necessarily reflect citation order of authors.

Citation: McClellan, Justin, David W Keith, and Jay Apt. 2012. Cost Analysis of Stratospheric Albedo Modification Delivery Systems. Environmental Research Letters 7, no. 3: 034019.
Full Text & Related Files:
Abstract: We perform engineering cost analyses of systems capable of delivering 1–5 million metric tonnes (Mt) of albedo modification material to altitudes of 18–30 km. The goal is to compare a range of delivery systems evaluated on a consistent cost basis. Cost estimates are developed with statistical cost estimating relationships based on historical costs of aerospace development programs and operations concepts using labor rates appropriate to the operations. We evaluate existing aircraft cost of acquisition and operations, perform in-depth new aircraft and airship design studies and cost analyses, and survey rockets, guns, and suspended gas and slurry pipes, comparing their costs to those of aircraft and airships. Annual costs for delivery systems based on new aircraft designs are estimated to be $1–3B to deliver 1 Mt to 20–30 km or $2–8B to deliver 5 Mt to the same altitude range. Costs for hybrid airships may be competitive, but their large surface area complicates operations in high altitude wind shear, and development costs are more uncertain than those for airplanes. Pipes suspended by floating platforms provide low recurring costs to pump a liquid or gas to altitudes as high as ~ 20 km, but the research, development, testing and evaluation costs of these systems are high and carry a large uncertainty; the pipe system's high operating pressures and tensile strength requirements bring the feasibility of this system into question. The costs for rockets and guns are significantly higher than those for other systems. We conclude that (a) the basic technological capability to deliver material to the stratosphere at million tonne per year rates exists today, (b) based on prior literature, a few million tonnes per year would be sufficient to alter radiative forcing by an amount roughly equivalent to the growth of anticipated greenhouse gas forcing over the next half century, and that (c) several different methods could possibly deliver this quantity for less than $8B per year. We do not address here the science of aerosols in the stratosphere, nor issues of risk, effectiveness or governance that will add to the costs of solar geoengineering.
Published Version: doi:10.1088/1748-9326/7/3/034019
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11870368
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters